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ITERATIVE SCHEMES FOR TIME PARALLELIZATION WITH
APPLICATION TO RESERVOIR SIMULATION

IZASKUN GARRIDO AND GUNNAR E. FLADMARK AND MAGNE S. ESPEDAL, B. Lee

ABSTRACT. Parallel methods are usually not applied to the time domain be-
cause of the inherit sequentialness of time evolution. But for many evolution-
ary problems, computer simulation can benefit substantially from time par-
allelization methods. In this paper, we present several such algorithms that
actually exploit the sequential nature of time evolution through a predictor-
corrector procedure. This sequentialness ensures convergence of a parallel
predictor-corrector scheme within a fixed number of iterations. The perfor-
mance of these novel algorithms, which are derived from the classical alternat-
ing Schwarz method, are illustrated through several numerical examples using
the reservoir simulator Athena.

1. INTRODUCTION

Hydrocarbon flow in porous media is often approximated with a mathemati-
cal model involving three coupled non-linear evolution equations for the primary
variables temperature, pressure, and molar masses, and tabulated values based on
bubble and dew point curves for the secondary variables. Since this model is gen-
erally too difficult to solve analytically, a simplified model is solved numerically
by decoupling the equations and discretizing them using finite volume in space and
backward Euler in time. The resulting non-linear system of equations is then solved
using the iterative Newton-GMRES algorithm [3], [4].

This is the overall structure of Athena, our current simulator for flow in porous
media. The goal of Athena is to simulate a wide variety of flow scenarios within
reasonable accuracy, in reasonable computational time. However, to simulate real-
istic problems, the standard numerical algorithms are unacceptably slow. Thus, it
is necessary to develop faster, parallel algorithms.

The standard numerical approach is to sequentially solve for each primary vari-
able using a fixed time-step determined by the smallest evolutionary time-scale for
the primary variables, even though the time-scales for these variables may be an
order of magnitude different. In particular, the time-scale for temperature and pres-
sure is often an order of magnitude larger than that for the molar masses. Hence,
the temperature and pressure can be computed with larger time-steps. To miti-
gate this time-step restriction, a common procedure is to compute the temperature
and pressure with time-step AT, while sub-stepping G times for the molar masses
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computation efficiency in a serial computing environment.

The goal of this paper is to develop parallelization techniques for the sub-step
procedure, in order to speed up the computation. An ideal algorithm is one that
would completely bypass the sequential nature of time evolution in a parallelized
sub-step march. But this would go against the physics, and so, may lead to poor
accuracy. Hence, we propose a novel method, similar to the Parareal technique
studied in [1, 8, 2], that allows parallelization in the sub-step procedure and is also
causal. Causality is obtained by using a coarser time-step in a predictor-corrector
manner. Both the Parareal and this proposed method have a two-level structure,
with the predictor step defined on the coarse time level and the corrector step
defined on the fine level. The novelty in our approach is to decrease the time
domain as the predictor-corrector progresses.

This paper is organized as follows. For background and self-containment, Sec-
tion 2 describes the equations of hydrocarbon flow in porous media. Given these
equations, in Section 3, we review some of the existing parallel algorithms to handle
evolution equations, and give a general description of a predictor-corrector (PC)
algorithm for parallelizing time. This general description is given in terms of an
iterative method for solving a lower block bidiagonal matrix. The details of this
PC algorithm are given in Section 4. In this section, the PC method is viewed as a
two-level scheme where the coarse grid and fine grid procedures are respectively the
predictor and corrector steps. Section 4 further derives defect terms that modify
the predictor equations, introduces modifications to the PC algorithm that ensure
convergence within a fixed number of iterations, and analyses the computational
efficiency of this two-level algorithm. Section 5 develops a multilevel extension
that alleviates some of the load-balance issues of the two-level method. The in-
tricacies of this extension are given, as well as a description of the computational
costs for a cycle of this multilevel method. Numerical examples are presented in
Section 6 to illustrate the performance of these algorithms. Finally, Section 7 gives
the conclusions of this work.

We note that this paper concentrates on the derivation and properties of the
numerical algorithm, avoiding unnecessary details of our compositional simulator
Athena. For further details on Athena, we refer the interested reader to [5], [9],
[10], and [11].

2. EQUATIONS OF HYDROCARBON FLOW

We are interested in a multicomponent multiphase fluid flow in a porous media
region V with surface boundary S. The primary variables of interest are temperature
(T'), water pressure (py), and molar masses (N, ), for each component (v) of the
multicomponent multiphase fluid. The phases considered are oil (0), gas (g), and
water (w). The mathematical model for hydrocarbon flow in porous media involves
conservation laws for the molar masses and internal energy, and a water pressure
equation. Conservation of molar mass for a flow through a porous media region V
is given by the integral relation

(2.1) g/m,,dv—f-/ v-myz—/qydv,
ot Jy v v

where g, is the source/sink for molar mass density component m, (molar mass N,
is the volume integral of m,). Conservation of energy is enforced through the heat
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(2.2) g / (pu)dV — / (kVT) - dS = — / hpit - dS + / qdv
ot v S S v

where T is the temperature, k is the bulk heat conductivity, p is the density, and
u is the internal energy. And, an equation for the water pressure is derived by
imposing the pore volume V), be equal to the sum volume of all three fluid phases

at all times, i.e.,
R=V,— > V!

l=g,0,w

is zero at all times. This residual volume is a function of the water pressure p*, the
overburden pressure W, and each molar mass component INV,. Hence, a first-order
Taylor expansion of R(t + At) about ¢, together with the chain rule applied to
OR(p™, W, N,)/0t leads to the water pressure equation

OROp” S ORON, R ORIW

opv ot 248N, ot | At oW o

(2.3)

Equations (2.1)-(2.3) are three coupled non-linear differential systems. The pres-
sure and molar masses are clearly coupled in (2.3). The temperature is coupled
to the pressure and molar masses through its Jacobian. This Jacobian also is de-
pendent on the rock temperature, which in reservoir simulation, has a much lower
variation rate than the pressure and molar masses.

Now, to numerically solve this differential system, these equations are decoupled
and discretized using finite volume in space and backward Euler in time. Thus,
at each time-step interval, [T, T™*!], three discrete Jacobian systems of the form
AMAZ = fInl are solved in sequential order. These systems are solved with an
iterative Newton-Raphson method using, for example, preconditioned GMRES [3],
[4]. In general, at each time-step these Jacobian matrices change after each Newton
iteration. But for the temperature equation, since its Jacobian matrix is majorized
by the rock temperature, its Jacobian will be changed only between each time-step.
Having determined the temperature at time 71"+ the pressure and molar masses
must be determined using a Newton-Raphson iteration. As for the pressure system,
its Jacobian has off-diagonal terms that depend on the molar masses. Because of
the decoupling, these off-diagonal terms will involve only time-lagged molar masses.
Thus, the non-linearities in the discrete pressure equation are restricted to the
diagonal terms AM = D) where the superscript s corresponds to the number
of Newton iterations. Turning to the molar mass, as noted in Section 1, the rate
of change for the temperature and pressure are comparatively small compared to
the rate of change for the molar masses. So, for each time-step interval, the molar
mass equations are sub-stepped with stepsize THE;J Given the temperature and
pressure, the non-linear molar mass system at time-level 7" is

(2.4) ArONNI D] _ fins)]y = flns)],
Superscript s will be omitted in the remainder of this paper.

For further details of the discretization of (2.1)-(2.3), we refer the interested
reader to [7].
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In this section, we review some of the existing parallel algorithms for evolu-
tionary equations. As alluded in the previous section, the most computationally
intensive procedure in hydrocarbon flow simulation is the sub-step march for the
molar masses. If this procedure can be computed in parallel, then the computation
of the molar masses can be substantially improved. In general, such parallelization
can improve the computational performance for any of the three variables.

The solution procedure for an evolutionary equation time-discretized with back-
ward Euler can be viewed as forward substitution (or an approximation) for the
lower block bidiagonal matrix system

[,1 ul fl
My Lo U2 f2

(3.1) Mz L3 us | =] f3 |,
Mn_1 Ly uUN fn

where £; is the matrix operator acting on the unknown at the " time-step and

M;_1 is the matrix operator acting on the unknown of the previous time-step. A
direct forward substitution is clearly seqential in time. However, to achieve some
parallelism, a common approach is to parallelize in space as time is sequentially
marched. This corresponds to forward substituting (3.1) with parallelism in the
inversion of £;. For example, when the evolutionary equation is parabolic, inversion
of £; corresponds to solving an elliptic equation, in parallel. This standard approach
definitely does not exploit full parallelism, especially when the temporal grid is much
finer than the spatial grid.

Two other parallel approaches for time-dependent problems are waveform re-
laxation and overlapping Schwarz waveform relaxation. These methods do achieve
parallelism in time. To describe these approaches, consider an one-dimensional
time-dependent problem, i.e., 1-1 dimensional in space-time. Spatially discretizing
this problem leads to a system of ode’s, one equation for each spatial grid point:

du

(3.2) 7 +Au = f,
where A4 is the matrix that describes the coupling produced by the spatial dis-
cretization. Denoting the diagonal of A with D, a Jacobi-type iterative scheme for
solving (3.2) is

k
(3.3) ddit +Duk = f+ (D - Aur Y,
which leads to a system of decoupled ode’s at each iteration. Each of these time-
dependent problems then is solved for the complete time interval on different CPU’s.
This is the basic waveform relaxation approach. A generalization of it is the over-
lapping Schwarz waveform scheme ([6]). Rather than subdividing the spatial do-
main with grid points, the overlapping Schwarz method decomposes the spatial
domain into several overlapping subdomains, see Fig. 1. On each subdomain, a
time-dependent problem must be solved. These subdomain problems are solved in
parallel, with an appropriate strategy for updating the subdomain interface values.
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space

FI1GURE 1. Domain decomposition for overlapping Schwarz wave-
form method.

Waveform relaxation suffers from poor convergence. Hence, several multigrid
schemes have been developed by Vandewalle et al. ([14]) to overcome this conver-
gence problem. Overall, this scheme can be viewed as applying multigrid to a fully
discretized time-dependent problem, with time viewed as another spatial variable.
However, because the space-time grid is generally anisotropic (e.g. At < Azx),
line relaxation or semi-coarsening must be used in the multigrid procedure ([13],
[15]). For our 1-1 dimensional problem, line relaxation in the time direction, as
the strength of connection is in the time direction when At <« Az, is equivalent
to solving an one-dimensional evolutionary equation. This line solve is performed
using cyclic reduction, which can be done recursively in a multigrid fashion and
in parallel. Vandewalle et al. has also examined semi-coarsening and pointwise
smoothing, which lead to better parallelism.

The above parallel approaches have been most successfully applied to second-
order parabolic equations. However, for hyperbolic systems, the smoothing char-
acteristic of parabolic equations is not present, and so, the overlapping Schwarz
and multigrid methods may suffer. Moreover, for higher-dimensional equations,
algorithmic/implementation issues can make these methods impractical.

Before introducing an alternative approach, it is insightful to examine the cyclic
reduction scheme for solving (3.1). Cyclic reduction is a direct method that com-
bines the even numbered equations with the odd numbered equations to create a
system half the original size and with the same bandwidth pattern. For example,
when N = 8 in (3.1), the reduced system is

Lo u2 fo— M1LTf1

- M3LS_1M2 La uq fa — Msﬁs_lfs
~M5LF My Les ue - fo — MsLy ' fs

*M7ﬁ7_1M6 Lsg ug fs — M7E7_1f7

The solution components of the smaller system and original system are the same,
and this size reduction procedure can be repeated recursively until a small system
that can be easily solved is formed. Once the solution of the smallest system has
been determined, it can be used to calculate the unresolved values of the next larger
system. This back substitution procedure is recursively applied up to the original
system. Of course, a problem is the inversion of £;’s when they are submatrices,
as is the case in higher dimensional evolutionary equations. Nevertheless, this
procedure gives insight into developing other methods.
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knowns and modifying the original system to account for this ignoring. Suppose
instead of ignoring and modifying, that approximations to the odd numbered com-
ponents can be computed. Then with these values, the following reduced system
can be formed:

Lo U2 fo— Miua
Ly o fa— M3z

Ls U fo — Msas

Ls s fa — My

where 4; denotes an approximation to u;. In fact, this reduction can be done in a
coarser fashion. For example, suppose only an approximation to u4 is known. Then
the reduced or decoupled system is

L1 31 f1
M1 Lo ug f2
Mz L3 ug f3
35 Ms L4 . T4 _ fa ~
U5 f5 — Maiy
Ms Lo ig fe
Me  Lr 7 fr
Mz Ls ig I8

Each sub-block is lower bidiagonal, and so, if approximations to some of the sub-
block unknowns are available, then this procedure can be applied recursively. More-
over, because the sub-blocks are decoupled, each sub-block system can be performed
in parallel. Naturally, since only approximate values for the lower sub-blocks are
used, this procedure must be repeated iteratively. This is the essence of the novel
parallel method we propose.

4. A Two-LEVEL ALGORITHM- THE GENERAL SCHEME

So the idea of our parallel method is to compute approximations to the solution at
certain time levels. These approximations will permit the time march to decouple
over sub-intervals, which in turn, will lead to parallelization of the march over
the whole time interval. To compute these approximations, a predictor-corrector
procedure is used. But unlike in a typical predictor-corrector (PC) method, where
an explicit scheme predicts the solution at a fixed time and an implicit method
corrects the prediction, in our method, the solution is both predicted and corrected
with backward-Euler, at a collection of time levels, and with the corrector computed
in parallel. The difference between our predictor and corrector procedures lies in
the size of the time-steps- the predictor uses a coarse step whereas the corrector
uses a fine step. Thus, the overall parallel procedure can somewhat be viewed as a
full approximation storage (FAS) multilevel scheme [13]. We describe this method
corresponding to matrix equation (3.4) first.

Consider the domain Q = I' U ) as shown in Fig. 2, where I' = T™ denotes
the boundary where the initial boundary condition is given and Q = (T, T"1].
The diameter AT = (T™*! — T") of Q can be viewed as the time-step for the
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FIGURE 2. The solution over the total coarse domain (in the left)
determines the BCs for each parallel-fine system.
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temperature and pressure equations in the hydrocarbon flow model. Recall that the
target temporal grid for the molar mass equations has meshsize At = &L, Besides
 and the target temporal grid, we introduce an intermediate grid obtained by sub-
dividing € into P sub-domains €); with meshsize AP = pAt. Hence, O = UL | Q;,
Q; = (T"+ (i —1)AP,T™ + iAP], and G = Pp. For example, in Fig. 2, we have
P =4 p=1, and G = 4, whereas in Fig. 3, P =3, p = 4 and G = 12. Sub-
domains €2; for ¢ > 1 have interface boundaries I';, and 2; has the actual boundary
I'; = T. Also, inside each subdomain, different discretizations that appropriately
match along the interfaces can be used, though we opt to use the same backward
Euler and finite volume discretizations in each sub-domain. We now have the
multilevel grid hierarchy for the algorithm.

Consider the two-level grid setup of Fig. 2. In this predictor-corrector algorithm,
we alternatively solve over the entire coarse domain €2 (predictor) and in the non-
overlapping fine sub-domains (corrector). Let N[™ denote the initial boundary
condition (BC) at time T™. Tracking the predictor-corrector iterate with &, in the
coarse domain, the residual boundary value problem (BVP) is

Q

A["]akAu[n]ﬁk = f[n],k Q

where Aul?l* = ylr+1k _ gk Having solved this BVP, the initial condition

u}?]’k = ul[?]l’k = NIl together with some approximations to the interface val-
ues ul[?lk,z = 2,..., P, serve as initial conditions for the sub-domain problems to

be solved in parallel. These interface approximations, gz["]’k, can be obtained by

linearly interpolating u[™-* and the computed solution u!"t'1:¥ or they can be con-
structed explicitly with a sub-step march over the intermediate grid if p > 1 in
the grid setup. In either case, solving equation (4.1) is the predictor step, which
determines boundary conditions for the fine sub-domain systems

(42) ? f’n],k _ 1['7,,]7]9 1_‘1 1= ]_,...,P.
Ujr, = 9 i

Note that sub-domain € is also solved on the fine grid.
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Now, having sotve in parallel, their solutions provide a“cotrection to the
coarse predictor system. Several choices for this correction will be given in the next
subsection. Letting S denote this correction, the overall predictor-corrector cycle
can be viewed as a block Gauss-Seidel iteration: the predictor step sequentially
solves for the entire time-domain using correction S constructed from the previous
corrector solution, and the corrector step immediately uses the predictor solution
to determine the interface boundary values,

Tterate

e on processor 0 solve

(4.3) A%g],kAul[g],k = flnlk 4 glnlk _ A‘[lr:],kN[n]
e on processor 4,1 =1,..., P, solve
(4.4) Am]zk AUE?s]zk _ fi[n],k _ AE?Ilzkgz[n],k‘

There are many strategies for determining when this alternating method has
converged. Due to the solution smoothness in time, we stop this alternating it-
eration when the solutions of (4.3) and (4.4) at ¢ = P differ within some given
tolerance- e.g., the tolerance can be O(AT — At), the difference between the order
of the coarse and fine time discretizations.

4.1. Correction Terms. To derive a correction term for the predictor equation, we
establish a relation between the predictor and corrector solutions. To accomplish
this, we assume a multilevel grid setup with p > 1, i.e., the intermediate sub-
domain partitioning and the target fine grid are different. With this setup, equation
(4.1) can be solved with a sub-step march over the sub-domain partitioning. Such
march will then explicitly determine the interface boundary conditions for the fine
corrector equations, instead of linearly interpolating them from u[™-* and u[*t11k,
Hence, the BVPs

[nlk A, [nl,k _  flnlk
(4.5) “in Au[n],k _ f|g[2] i-1 [nl,k} i=L....,P
ulri = N =+ Ej:l AU‘QJ

are sequentially solved in the predictor procedure. Morever, because p > 1, a
sub-step march must be conducted also in the corrector procedure. Indexing the
sub-steps in sub-domain Q; by i(j), these fine corrector equations are

[n],k [k _  flnlk
(46) ) [nt](‘;s:) z[lrf]lll?) j—1 [n],k .7 =1...,
iy~ %, + i Auilﬂi(n

with interface boundary condition u;r,, = gi-
To establish a relation between the predictor and corrector solutions, we add
and subtract Al[Tf]’k_IAu["]’k_l from the first equation of (4.5) to get

Q; |Q1

n),k— nl,k— nl,k—1\— nj, n nj,
Expanding out Aul[g],’k_l, (4.7) is equivalent to

nl,k—1 nl,k—1 nl,k—1y— nl,k n), nl,k
(4.8) T O R O N O [ !
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nce corrector syste e pre
[n] 7k_1 .

i1 °

march, we substitute ul[?lffl on the right-hand side of (4.8) with u

’

nl,k—1 _ [n],k—1 nl,k—1y — nl,k n], nl,k
“|[r]i+1 = “E'\r]m + (“4|[Q]1- ) 1(A|[Q]1- Aulmh — f|[01 )

or equivalently,

[n]7k ,k —_ [n]ak [n]yk71 [’"’]ak71 [nlykfl
(4.9) A\Qi Ayl _f|Qi +A|Qi (u|Fi+1 — U, ).
Equation (4.9) is the corrected predictor equation we solve on the coarse grid to
[n].k

get the interface value Ui,
i+1

for the corrector equation. Note that due to the non-
[n]vk_l _ {n]vk_l)
[Tit1 iTiq1
is also non-linear, and hence, must be updated at every Newton iteration.

Another correction scheme can be derived by adding and subtracting all earlier

linearity of the molar mass system, the correction term A}g],’k_l (u

predictor-corrector iterates to (4.8) and using the more accurate ugﬁl’]ﬂ 's:
[n] kN~ gl in]
n],k nl,k _ glnlk nl.j ¢, [n],J n],j
(4.10) A\Qi Aulmhk = flfli + ‘AIS_L' (u|Fi+1 - ui\ri+1) ’
=1

This is the Parareal correction term proposed by Maday and Lions ([1], [8], [2]).
For weakly non-linear problems, a modification of this Parareal correction term is
k—1
[nlk A, [n]k _ plnlk [n].k (i _ [0l
(4.11) AIQ,- Ayl™F = lei + AIQi (UIFi+1 “i|ri+1) .
=1
The implementation and computation of this latter correction term is greatly sim-
plified because only the current matrix operator has to be formed.
Yet another correction scheme follows naturally by reformulating the PC scheme
as a two-level FAS method [13]. In each of the above correction terms, the operator

A‘[g]v’j is applied to the difference of a predictor solution and a corrector solution.

Alternatively, a correction term can be formed using the operators of the two time
levels and only the more accurate corrector solution:

[n]’k_l [n]ak_l [n]7k
(412) I:‘A\Q, - Az’|Q,-(P) ] ui\Fi-H ’
giving the corrected predictor equation
[n],k &k _ [n],k [n],k—1 [n],k—1 [n],k
(4.13) Alhk ik = globk [Alﬁi — Ak ] ulrbh

Correction term (4.12) can be viewed as an approximation to the local truncation
error at time I';y;, which is the term that must be added to the righthand side of
the predictor equation to produce a coarse grid solution with fine grid discretization
accuracy [13].

4.2. Improved Parallel PC Algorithm. Employing any of the correction terms
given in (4.9)-(4.11) and (4.13), we have a parallel PC algorithm. The accuracy
of this method is determined by the accuracy of the corrector procedure. Each
iteration consists of first solving over the whole coarse time interval and then asyn-
chronously solving over each sub-domain. However, causality implies that the so-
lution in the initial sub-domain is not affected by the solution at later time sub-
domains. This observation permits a simple modification of the PC scheme that
ensures convergence within P iterations. The idea is to decrease the active time
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in the first PC iteration, since both the predictor and corrector solve the same
initial boundary-value problem in sub-domain €, and since the solution in this
sub-domain is physically unaffected by the solution in the later sub-domains, one
can take the more accurate fine-grid corrector approximation to be the solution in
Q. Having determined the solution in 1, this sub-domain can be eliminated from
the active time interval:

(414) Qactive = Q/Ql .

For the next PC iteration, on initial sub-domain Qs of the current Quctive, the

computed fine grid solution u[lrlb]r’zl will be taken as the initial condition,
n|,2 nl,1
(4.15) u‘[rl = u[llh .

Although the right-hand side of the predictor equation in Q» now has a non-zero
correction term, the actual equation being solved is the fine-grid corrector equation.
Besides, the correction term in the predictor equation is used only to generate
accurate sub-domain interface conditions for the corrector systems (c.f. Section
5.1 concerning the correction term 4.13). Hence, again we take the more accurate
fine-grid corrector approximation in (), and redefine the active time interval to
Qactive = O/ UL, Q;. After repeating this process k = P — 1 times, the computed
solution at the I';’s will be

[ ]7P pu— [ ]aP j— [ ]7P_1
(416) u|?1 —ga"'vu\?P _u;b—l‘rp’

and the active time interval will be Qacive = Q/ U2 ;. At this stage of the PC
iteration, both the predictor and corrector equations have the same initial condition
and are defined only over Qp. Once again the fine-grid corrector approximation is
taken to be the solution in Qp. Thus, after at most P iterations, this improved
algorithm converges with accuracy determined by the corrector approximations. A
graphic overview of how the active time domain evolves as the method progresses
is shown in Fig. 3.

FI1GURE 3. Active domain for the improved PC algorithm.
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Algorithm: Improved PC Algorithm
e = Ulegi, Ql = U?:lgi(j)'
. g:N[n],SIZO
e Fork=1,...
— Solve sequentially at processor root for ¢ =k, ..., P where Sl[g],’k is given in
(4.9), (4.10) or (4.11)
[n]k [nlE [n]k [n],k
Ami Au[n] ) — f|[ﬁj . + Smi[ "
nj, _ nj, nj, .
(4.17) Y = Ur,_, t Aulﬁi_1 ’ i>k
u[;]’k = g, i=k=1
k Jk— .
Wt o= S ik
— At each t"-processor with ¢g; = ul[gl’k, i =k,..., P, solve sequentially for
j = ]‘, .t ’p
[n],k [l _ [n]k
ilﬁi(j)Aui - filﬁi(j
[n],k — [n],k [n],k ;
(4.18) flli",gj) = T 1) + Auilﬁi(j—l) , j>1
n ’ P . > —
iy~ % I=1
— Modify the active time domain
Q« Q/Q
K ke
If ||u57}|]1,P+1 - ul[?]p+1 || < tol or k = P, stop.

Remark: The goal of our two-level PC scheme is to reach convergence in far
fewer than P iterations, otherwise the parallel fine-grid corrector procedure would
have benefited little, and this PC iteration would be forward substitution. In
terms of matrix system (3.1), this improved PC iteration is an “iterative forward
substitution” method for solving a block lower bidiagonal system. Our numerical
experiments demonstrate that fewer than P iterations are needed.

4.3. Linearized PC Algorithm. So far, our PC scheme has been developed using
a coarse sub-step march to generate the interface boundary conditions. It is very
tentative to derive these interface conditions by linearly interpolating u[™* and
ulm*t1:% This would eliminate the need to sub-step on the coarse temporal grid, and
thus, reduce the computational cost. Such interpolation approach would be suitable
for linear and weakly non-linear problems. But for highly non-linear problems,
because linear interpolation may poorly approximate the non-linear nature of the
system, the required number of iterations for this “linearized” PC scheme will
generally be more than that for the scheme of Section 4.2, though still within
P iterations. Nevertheless, at the k'th iteration of this PC scheme, the linearly
interpolated interface conditions are

P—i+1 [n],k i—k [n],k

S Pohe1ir PP opaitres 5k b

9i

IMULATION
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predictor equations are

[nlk A, Ik _  flnlk | glnlk—1g k=1 _  [nlk—1
(419) A|Q Au = f|Q + A‘Q (u|]_"P+1 uP|Fp+1) ’
k—1
[n],k nl],k — [n]:k ["]a j [n]v j [n]’ j
(4.20) Als—2 Aylrlk = fa™ + ZAm ](“|rp]+1 - “PIFJP+1) ’
j=1
nl,k n], _ nl,k nl,k — nl,7 n),j
(4.21) A|[0] Aglrlk = f|[§_21 + A‘[Q] ol —uld .
j=1

Remark: Although the interface conditions and correction terms involve linearly
interpolated values, at each Newton iteration, the A‘[g]’k’s must be updated, i.e.,
they are not linearized.

Algorithm: Linearized PC Algorithm
e 0= UleQ,’, Q; = U§?=1Qi(j)-
e g=NP 51 =9
e Fork=1,...,
— Solve sequentially at processor root over the active domain § where SI"1*
is given by (4.19), (4.20), or (4.21):

Alfgl,k N - f‘[g],k i S‘[g],k
(4.22) uf;],k - 4. be1
u|?],k = ugﬂ’ﬁ;: , k>1

P—it1,[n]k i—k__, [n]k
P e T Pik+1“|rp+1’
i=k,..., P, solve sequentially for j =1,...,p

— At each i*®-processor with g; =

[n],k [k _ [n]k
Am"(”A[u? _ fi[ls?if(c” [n].k
nl, _ an nl, .
(4.23) irgy  — Ylngon T Auilﬁi(j—l) >

[n],k _ . =1
iTi() gio J=

— Modify the active time domain

Q « Q/Q
If ||u57}|]1:’;+1 — ul[?]Pil || < tol or k = P, stop.

4.4. Two-Level Computational Efficiency. A deficiency in the two-level method
of Section 4.2 is the bottleneck in (4.17). For each PC iteration, the root processor
must complete its sequential march before the child processors can start, resulting
in processor idleness and communication traffic. The bottleneck in processor com-
munication can be mitigated by looping (4.17) and (4.18) differently:
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FIGURE 4. Two-level Method. Counting the sub-step solves in
the first PC iteration for three different sub-domain partitionings:
G =16, (P,p) = (2,8),(4,4),(8,2). Sub-step solves that occur
simultaneously on different processors are counted only once.

Algorithm: Reduced Bottleneck Loop
For k=1,...
Fori=k,...,P—1,
— Solve at processor root

Al[n] kAol — {_] + S[n] k
1, Ql
(4.24) “I[F]i ) = |[F] . ;LAul ~ i>k
nj, — n .
Ur, = Yo, t= k-
— At processor (i + 1), with g;4y1 = u‘[ nl.k , begin solving for j =1,.
(4.25)
[n],k ok _  gnlk
i+1|9(i+1>ﬁ:‘> Auil = fidage
u nl,k — u{n]vk [n]vk_ .7 >1
E’+1ILF(i+1)(j) 1 (41)(-1) H+1Q6 416 -1)
nj, _ .
10y ditly I = L.
Solve sub-domain ¢ = P on the root processor:
A["] kAylnLE = + glnlk
(4.26) [k _ fl[n] k lXP[n],k .
wr, = ur,_, TAug i>k.

Now once the root processor has finished a sub-step, it can immediately communi-
cate the computed interface boundary condition to the appropriate child processor,
and, while this communication is occurring, the root processor can begin its next
sub-step. As for processor idleness, it can be reduced by starting the next pre-
dictor cycle on the child processors that have completed their marches before the
root processor has completed its march. This unfortunately involves complicated
processor scheduling.

Suppressing this complicated scheduling, the efficiency of the parallel two-level
method can be obtained by counting specific sub-step solves on all processors, and
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counting the number ot blocking commiunications (i.e., communications that delay

the start-up of the last running processor ). In particular, sub-steps that are solved
concurrently on different processors are counted only once. This is illustrated in
Fig. 4, which shows the counts for three different sub-domain partitionings of a fine
grid with G = 16— e.g., for the top partitioning, since the first sub-domain of both
levels are solved concurrently, they are numbered 1; since the second sub-step of
both levels and the ninth sub-step of the fine level are all solved concurrently, they
are numbered 2; etc. Table 1 summarizes the efficiency for several time-marching
schemes. First, a serial march requires no communication and only G sub-steps
since the predictor is not needed. For the two-level method with loops (4.17)-
(4.18), in the k’th PC iteration, (P — k + 1) sub-steps are needed for the predictor
and p sub-steps are needed for the corrector. Moreover, before the last processor
can start its march, it must wait for (P—k) communications. Hence, for [ iterations,
the efficiency of this scheme is

1
1
Z[(P—k+1+p)solves+(P—k)c0mms] = l<P+p+1—(H2_ )>solves

k=1
+ 1 (P — H_Tl) comms.

Finally, using the above counting convention, in the k’th PC iteration, the two-level
method with loop (4.24)-(4.25) requires (P — k+ p) solves. Also, since the predictor
march continues while communication is occurring, only the last communication is
blocking. Thus, for [ iterations, the efficiency of this scheme is

1
I+1
Z[(P — k + p) solves + 1 comms] = { (P +p— %) solves + | comms.
k=1

| Method | Sub-Steps | Comms | Efficiency
serial G none G sub-steps
Loops (4.17)-(4.18) || (P—k+1+p) | (P—k) | (P —k+1+ p) sub-steps & (P — k) comms
Loop (4.24)-(4.25) (P—k+p) (P—k) (P — k + p) sub-steps & 1 comm
TABLE 1. Efficiency for the k’th iteration. The serial method per-

forms only 1 iteration, a forward substitution.

Note that irrespective of the sub-domain partitioning, the two-level method with
loop (4.24)-(4.25) requires just 1 blocking communication. Thus, its efficiency at
the k’th iteration is optimized by choosing a partition that minimizes the sub-step
count. That is, its efficiency is optimized by minimizing

G

IThe root processor can communicate each interface value using point-to-point communica-
tions, or it can communicate all the interface values at once using a scatter communication. For
large sets of data, both types of communication complete their tasks in about the same time.



ITERATIVE SCHEMES FOR TIME PARALLELIZMI&%}I p%lé[‘el APPLICATION TO RESERVOIR SIMULATIONS

Slave Procs: 1 2 3 4 5 6 7 8 9

FIGURE 5. Processor scheduling for two-level method, fan-out
from left to right.
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FIGURE 6. Processor scheduling for the multilevel method.

The minimum of f occurs at P = v/G and the minimal value is (2v/G — k). Hence,
this two-level scheme’s optimal efficiency for [ iterations is

l (2\/6 — @) solves + | comms.

But obviously this choice for P affects the value of [/, the required number of PC
iterations to reach convergence.

5. MULTILEVEL EXTENSIONS

A remaining issue with the two-level method is processor idleness. This problem
can be further embellished when the optimal sub-domain partitioning is chosen,
since then only (v/G + 1) of the total number of processors are used. Hence, there
is an incentive for having many small sub-domains. In this section, we develop a
multilevel extension of the two-level method that uses just such partitioning yet
keeps the sub-step count low.

To achieve better load-balance when many small sub-domains are used, an initial
consideration is to allocate more processors to the predictor procedure. But this
returns us to the original problem of time parallelization- processors cannot start
until boundary conditions are available. Undoubtedly what needs to be achieved is
faster generation of interface boundary conditions. One way this is accomplished
is by recursively applying the matrix method of (3.5) to its own sub-blocks. To
describe this recursion, it is helpful to illustrate the processor scheduling using
trees and grids. First, the processor scheduling for the two-level method is given
by the tree shown in Fig. 5. For the two-level scheme with loop (4.24)-(4.25),
processor 0 immediately fans out to a branch processor once the necessary interface
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FI1GURE 7. Grid layout of processor scheduling for the multilevel
algorithm. Dark clips are the processor boundaries, square clips
are time levels where several approximations of different grid reso-
lutions exist. Richardson extrapolation can be performed on these
approximations to generate more accurate solutions at these time
levels.

boundary condition has been computed. The processor scheduling for the recursive
scheme, on the other hand, leads to a tree that spins off pairs of branches at each
processor node, as shown in Fig. 6. After only a few levels down the root node,
a majority of the processors will be active. Each pairwise branching corresponds
to a newly computed interface boundary condition at an intermediate time level
in (T, T™1). This interface boundary condition creates a processor distribution-
the sub-domain to the left of the intermediate time level is sub-stepped on one
processor, while the sub-domain to the right is sub-stepped on another processor.
Fig. 7 elaborates this branching. In this diagram, there are three coarsenings of
the bottom target grid. For the two-level method, the bottom grid and any one
of the three other grids, depending on the sub-domain partitioning, are used. For
the recursive multilevel scheme, the collection of all the grids forms the multilevel
grid hierarchy. Corresponding to this grid hierarchy is a processor distribution.
Each processor takes a sub-domain composed of two sub-steps. For example, Proc
0 takes the top grid with the whole time domain [T™,T™*!] as one sub-domain
with two sub-steps, Proc 1 takes the left sub-step of Proc 0 as a sub-domain and
further divides it into two finer sub-steps, etc. To relate this figure’s layout to the
pairwise branching of Fig. 6, consider the top grid. Here, after Proc 0 has marched
one sub-step, it has computed an interface boundary condition that permits Proc 2
to start its march. Proc 1 also can start, though it could have started concurrently
with Proc 0. Taking the delayed start-up of Proc 1, after Proc 0’s first sub-step, a
pairwise branching fires up Proc 1 and Proc 2. Next, on the second grid, once Proc
1 and Proc 2 each has completed its first sub-step, they pairwise branch off to Proc
3 & Proc 4 and Proc 5 & Proc 6, respectively. This branching continues down to
the third grid where the next branching finally leads to the target temporal grid.
The end result is a multilevel partitioning composed of many small sub-domains.
This branching procedure spawns off a variety of choices for the PC algorithm.
One option already alluded to is the immediate/delayed start-up of processors,
with this option arising whenever a time level is common to several grids. Using
immediate start-up, some of the processors alloted to the finer grids will be activated
rather early in the branching cycle. For example, in Fig. 7, once Proc 0 reaches
T”+%, in addition to Proc 2, Procs 5 & 11 can also start marching. Alternatively,
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Ficure 8. Grid layout of the multilevel improved PC iteration
after the initial 2 PC iterations. For the second iteration, labelled
k = 1, the left-hashed time interval is removed from the grid hi-
erarchy. For the third iteration, the next hashed time interval is
removed.

using delayed start-up, Procs 5 & 11 respectively start only after Procs 1 & 4
have completed their short marches. Although delayed start-up is less efficient, an
advantage it has is a construction of consistently accurate interface values on a grid
level. Moreover, since delayed start-up generates several different approximations
for a common time level, Richardson extrapolation can be applied to obtain better
approximations. In particular, delayed start-up can be used on a minimal number
of coarser grids, just enough to generate the necessary number of approximations
for an application of Richardson extrapolation. The extrapolated interface value
may be sufficiently accurate for use on all the remaining finer levels- i.e., immediate
start-up for these levels.

Up to now, a PC iteration with this branching cycle has not been described.
There are several options on how this iteration can be structured. One approach is
to have the first PC iteration be the branching cycle, and then all future iterations
be the two-level scheme applied to the two finest grid levels. The purpose of the
branching cycle would be to efficiently form an accurate initial approximation over
the whole time domain, which then can reduce the total number of PC iterations
to reach convergence. However, although more processors will be alloted to the
predictor procedure of the two-level module, the sequential march of the predictor
nullifies the purpose of this allotment. Hence, this leads to the next option for the
PC iteration: branch cycle for each PC iteration. After the corrector procedure of
the finest grid, the next iteration begins again on the coarsest grid and branches
down to the finest grid. The active domain of this cycle is modified like in the two-
level method. But because the eliminated sub-domains may cover only a fraction of
a sub-step on some of the coarser grids, only a portion of a sub-step will be removed
on these grids. Fig 8 illustrates this after two PC iterations. For iterate £ = 1,
a sub-step will be removed on level 2, an half sub-step on level 1, and a quarter
sub-step on level 0. For iterate k = 2, totals of two sub-steps will be removed from
level 2, a whole sub-step on level 1, and an half sub-step on level 0.

Two other options for the PC iteration are in the correction term and the stop-
ping criterion. For the correction term, at right sub-domain boundaries that are
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FiGURE 9. Multilevel Method. Counting the sub-step solves in
the initial PC iteration. Sub-step solves that occur simultaneously
on different processors are counted only once.

positioned at mutual time levels of several grids, one can continue to use the cor-

rection term

[n],k—1, [n],k—1 [n],k—1
A@i (u|ri+1 _ui|ri+1 )’

or one can replace uE‘"ll]:l with a Richardson extrapolated value. For the stopping

criterion, one can choose a measure based on the difference between the solutions
at time T™*! on the coarsest and finest levels, on the two finest levels, or on the
finest level and a Richardson extrapolated solution.

Finally, we examine the efficiency of this multilevel method. Fig. 9 shows the
number of solves required in the first PC iteration for the delayed start-up option.
One can see that for two consecutive levels, the numbering on the coarser level
repeats itself on the left half of the finer level. Thus, the last solve occurs on
the right half of the finest level. In particular, a little reflection reveals that the
last solve will occur in the second-to-last sub-domain of the finest level, e.g., in
Fig. 9, it occurs in sub-domain 7. This transpires because of the delay resulting from
generating an accurate interface value for this sub-domain. Assuming the number
of sub-domains on the target grid to be 2”,n > 1 (other powers can be used but
different tree structures will be formed), this last solve will be numbered 2n. Thus,
since the processor performing this solve has to wait for only 1 communication, the
efficiency for the first PC iteration is

2n solves + 1 comm.

For future iterations, the number of solves only gradually decreases as the active
domain is reduced (see Fig. 10). Hence, for [ PC iterations, an upper bound for the
efficiency is

(5.1) 2nl solves + [ comms.

With immediate start-up, the efficiency may improve. Fig. 11 shows the solve
count for immediate start-up on the same grid hierarchy used in Fig. 9. One can
see that the last solve occurs on last sub-domain of the finest grid, and with a total
of 2", n > 1, sub-domains on this grid, this solve is numbered (n + 2). Also, the
processor computing this solve must wait for only 1 communication, so that the
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F1GURE 10. Counting the sub-step solves in the second, third,
fourth, and fifth (k = 1,2,3,4) PC iterations with the active do-
main decreasing. The reduction in number of solves is minor.

efficiency for the first PC iteration is
(n + 2) solves + 1 comms.
But again the number of solves slowly decreases as the active domain is reduced.
Thus, for [ PC iterations, the efficiency is bounded above by
(5.2) I (n + 2) solves + | comms.

Although this bound is smaller than the bound for delayed start-up, the overall
number of iterations to reach convergence for this scheme generally will be larger.

Comparing the efficiencies of the two-level and multilevel methods, it initially
appears that the latter method dramatically improves the efficiency. For example,
for a target grid with G = 1024 sub-steps, the cost for [ iterations for the optimal
two-level method is roughly

l (64 — ( ; 1)> solves + [ comms,

while the costs for delay and immediate start-up are respectively

18] solves + [ comms
and
117 solves + I comms.

However, the two-level method is computed on only (\/@ + 1) = 33 processors,
whereas the multilevel methods are computed on 1023 processors. Thus, these
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FiGURE 11. Counting the sub-step solves in the initial PC itera-
tion for immediate start-up.

multilevel extensions do not attain processor scalability, i.e., since there are roughly
31 times the number of processors used in the multilevel methods, but the speed-up
for [ iterations is roughly 4-6 times. Of course, this scalability would improve if
more iterations are needed in the two-level method than in the multilevel methods.

5.1. Multilevel FAS Reformulation. This multilevel branch scheme may re-
quire more iterations than one may anticipate. Since the coarser levels generally
involve much larger time-steps than the target fine grid, the correction terms given
in (4.9)-(4.11) may be ineffective in generating accurate interface values. On the
other hand, correction term (4.12) can generate better interface values. More im-
portant, using this correction term, the multilevel branch scheme becomes a multi-
grid FAS iteration for the time march. Now the task of the coarse levels is not
just to obtain accurate initial values for the finer levels, but also to eliminate slow
time error modes of the target fine grid approximation [13]. This can substantially
improve the convergence rate of the branch scheme (see Table 2).

6. NUMERICAL EXAMPLES

In this section, we demonstrate the performance of the multilevel and two-level
methods on a linear advection equation and a reservoir simulation, respectively. The
goal of the advection problem is to exhibit the performance of the multilevel scheme
on a massively parallel computer system; the goal of the reservoir simulation is to
exhibit the applicability of our two-level method on a realistic, highly non-linear
problem.

6.1. Linear Advection Equation: Multilevel Schemes. We consider the fol-
lowing linear advection problem defined on the spatial domain D = (0,0.5)® with
inflow boundary 0D 10w = {(2,9, 2) : 2yz = 0} :
%—’t‘+%+g—z+‘g—: =1 (z,y,2) €D
(6.1) u(x,y,2,t=0) =1 (2,y,2) €D
u(w,y,z,t) =0 (m,y,z) € aDinflow-
The computational mesh is uniform for both space and time, with the same spatial

grid of 50 points in each direction (i.e., Az = Ay = Az = 0.01, a total of 125,000
spatial points) at every time-step, and with the time-step on coarsest level 0 being
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ume in space and backward Euler in time. The operators Al[g],’k
and hence, at each time-step, the linear systems are solved with GMRES precondi-
tioned with a Schaffer multigrid V cycle [12]. Lastly, the stopping criterion for the

multilevel PC iteration is

are non-symmetric,

v
s

S [Ato - Atﬁnest]-

Table 2 shows the results for runs made on a parallel computer system with a total
of 2096 Intel Xeon processors (2.4 GHz). For branch cycles with the correction
term given in (4.9), the number of PC iterations does not scale with respect to the
number of finest level time-steps. Moreover, although the number of PC iterations
is less than the number of finest level sub-domains, the total computational cost for
this method is unsatisfactory since the cost per branch cycle for the target time grids
used in these experiments is roughly 10 solves. However, using the FAS correction
term, which transforms the branch cycle to a FAS cycle, the number of PC iterations
does scale with respect to the number of finest level time-steps. Moreover, the small
number of iterations makes the FAS cycle extremely computational efficient.

| # Procs | # Target Fine Sub-domains || Branch Cycle | FAS Cycle |

63 32 19 2
127 64 37 2
255 128 73 2
511 256 >100 2

1023 512 - 2

TABLE 2. Performance of the multilevel time-marching scheme on
a linear advection equation. Only the FAS cycle was used on the
1023 processors run because the convergence rate of the branch
cycle already can be observed to depend on the number of target
fine time-steps.

6.2. Reservoir Simulation: Two-Level Method. We now consider a realistic
non-linear problem. The two-level methods of Sections 4.2 and 4.3 are implemented
for the molar mass equations in Athena, our hydrocarbon migration simulator. Be-
cause of difficulties in importing Athena to the above parallel computer system,
these experiments were conducted on a Linux cluster with PIII processors. More-
over, because of difficulties in implementing the reduced bottleneck communication
loop in Athena, MPI broadcasting was used to communicate the interface values to
the child processors only after the predictor completed its full time march. Imple-
mentation complexities in the complex simulator also constrained us to modify the
correction terms for the predictor equations:

(6.2)5"[81”c = A‘[g]i’k(u‘[?]iffl - uET‘F]”:l) for the improved PC algorithm,
(63)SI* = AR (Tt~ WELEL) for the linearized PC algorithm.

Our experiments were carried out on a geological domain of size 1000m X
100m x 70m, with its upper end points located at a depth of 50m from the
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FIGURE 12. Gas saturation. FIGURE 13. Oil saturation.

earth’s surface. The vertical topography of the domain consists of four layers
of rock: shale, sandstone, shale, sandstone. Hence, the mathematical equations
have discontinuous coefficients since the lithology for sandstone has a porosity of
¢ = 0.5 and a permeability of K, = 500mD, K, = 500mD, K, = 500mD,
whereas the lithology for shale has a porosity of ¢ = 0.5 and a permebililty of
K, =5-10"%mD, K, = 5-107%mD, K, = 5-10~®mD. Finally, the chosen
boundary conditions are a left inflow flux of 5-10~° mol/m?s for oil and gas, a right
outflow flux of 6.5-10~* mol/m?s for water, a top temperature value of 450 K, and
a bottom temperature value of 460 K. Fig. 12 and Fig. 13 display Athena’s output
results for a simulation of a 100 years. These figures also illustrate the uniform
computational grid used in our experiments.

6.3. Improved Parallel PC Algorithm in Athena. We apply the improved
parallel PC algorithm of Section 4.2 to the molar mass equations.

6.3.1. Computational results: Scalability. In this experiment, we are interested in
the processor scalability of our parallel two-level algorithm, although we remark
that only 2 PC iterations were needed to attain convergence in our experiments.
By varying the number of processors, we explore the speedup of a parallel run over
a serial run. Ideally, as more processors are used, the wall-clock time is expected
to decrease linearly as a function of the number of processors used. However,
because of processor communication, this ideal situation is observed only when the
computational costs dominate the communication costs.

Our implementation of the two-level method is based on a MPI master-slave
processor structure, where the number of sub-domains equals the number of slave
processors. In our experiments, we vary the number of sub-domains, or slave pro-
cessors, while keeping the size of the target time-domain fixed to G = 16 time-steps.
Therefore, successively doubling the number of sub-domains i times, i = 0, ..., 4,
the number of sub-steps in each sub-domain successively halves to p = 24~%. Since



ITERATIVE SCHEMES FOR TIME PARALLELIZATION WITH APPLICATION TO RESERVOIR SIMULATI(OIS

1

v
;
ogfa !
) \\
\
o8h
\

07F N 4 'y
N

<=

U5 S N S
\
05f 8 i
\
04F Y &

0.3

e 3
;
,

0.2

0af B

FIGURE 14. Spatial grid of 200 cells. Run time vs. i, where 2¢,
i = 0,...,4 is the number of sub-domains. On the left, timing
for communication (.- increasing), calculation (.- decreasing), and
the sum of both (- -) for the slave processors. On the right, the
speedup for the full slave and master run.

a sub-domain resides on one processor, increasing the number of sub-domains de-
creases the amount of computation per slave processor but increases the number of
communications.

Results for our experiments are shown in Fig. 14-Fig. 15. On the left plots
of these figures, the slave processor run-time is plotted against i, where 2! is the
number of sub-domains. This slave processor run-time is the average of the times
for all slave processors. As can be observed, the computational time decreases
(monotonic decreasing curve) as the number of sub-domains increases, but at the
same time, the collective broadcasting time increases (monotonic increasing curve).
Note that the computational time decreases more than expected- e.g., for ¢ = 1,
one would expect the computational time only to halve whereas the actual time
is quartered. There are two possiblities for this discrepancy. First, the number of
Newton-GMRES iterations is less in the parallel runs, and second, the number of
Jacobian matrix formations are clearly more in a serial run.

Now, the relevant timings are the sums of the computation and communication
times. These are plotted in the square-marked curve, which shows that that the
method is competitive up to a degree of parallelism, i.e., to a balance between the
computational and communication costs. For the small number of spatial points
used in this experiment, the communication costs are relatively high.

So far, we have considered only the timings for the corrector solves. To observe
the overall speedup of the two-level method, both the predictor (master processor)
and corrector (slave processors) timings need to be added. This is displayed on the
right-hand graph of Fig. 14. There we observe that the best speedup occurs in the
optimal sub-domain partitioning with P = /16 = 22.

6.3.2. Computational Results: Performance. In this subsection, we explore the scal-
ing when the number of spatial points are increased. As previously indicated, when
the number of spatial points are increased, the computational costs dominate the
communication costs. This is indeed the case as can be seen from the left-hand
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FIGURE 15. Spatial grid of 800 cells. Run time vs. i, where 2¢,
i = 0,...,4 is the number of sub-domains. On the left, timing
for communication (.- increasing), calculation (.- decreasing), and
the sum of both (- -) for the slave processors. On the right, the
speedup for the full slave and master run.

graph of Fig. 15. Hence, we have an overall improvement of the processor scalabil-
ity. On the right-hand graph, we see again that the best speedup occurs with the
optimal sub-domain partitioning.

6.4. Linearized Parallel PC Algorithm in Athena. In this subsection, we re-
peat the experiments of Subsection 6.3.1 using the linearized parallel PC algorithm.
Since the molar mass equations are highly non-linear, we would expect the number
of PC iterations to increase. This was indeed the case as roughly P PC iterations
were needed. Nevertheless, scalability results are plotted in Figure 16. Better paral-
lel speedup is obtained since there are less communications- only the last corrector
solution needs to be communicated to the root processor. Also, the overall speedup
is better because only one time-step is needed in the corrector march. However,
since the required number of PC iterations is about P, this linearized method is
inefficient for these highly non-linear molar mass equations.

7. CONCLUSIONS

In this paper, several Parareal-type schemes for time parallelization were devel-
oped. We introduced several simple predictor correction terms, and a progressive
domain reduction procedure that simulated forward substitution. We also extended
our two-level method to multilevels. In particular, using correction term (4.12), our
multilevel branching cycle converts to a FAS time marching iteration, which has
better convergence properties.

The performance of these methods were demonstrated through a model linear
advection problem and a realistic reservoir simulation. Results of the advection
problem exhibited the performance of the multilevel methods on a large number
of processors. The FAS iteration displayed superior performance. Results of the
reservoir model demonstrated the applicability of the parallel time marching scheme
to realistic non-linear problems. Although only a small number of processors were
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FIGURE 16. Spatial grid of 200 cells. Run time vs. i, where 2¢,
i = 0,...,4 is the number of sub-domains. On the left, timing
for communication (.- increasing), calculation (.- decreasing), and
the sum of both (- -) for the slave processors. On the right, the
speedup for the full slave and master run.

used, our two-level scheme displayed encouraging performance for a highly non-
linear problem. However, the linearized two-level PC iteration did not display
similar encouraging performance because of the equations’ high non-linearity.
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